Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JASA Express Lett ; 2(5): 054001, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154067

RESUMO

Free-floating balloons are an emerging platform for infrasound recording, but they cannot host arrays sufficiently wide for multi-sensor acoustic direction finding techniques. Because infrasound waves are longitudinal, the balloon motion in response to acoustic loading can be used to determine the signal azimuth. This technique, called "aeroseismometry," permits sparse balloon-borne networks to geolocate acoustic sources. This is demonstrated by using an aeroseismometer on a stratospheric balloon to measure the direction of arrival of acoustic waves from successive ground chemical explosions. A geolocation algorithm adapted from hydroacoustics is then used to calculate the location of the explosions.


Assuntos
Acústica , Som , Algoritmos , Movimento (Física) , Espectrografia do Som
2.
Geophys Res Lett ; 48(12): e2021GL093013, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34433991

RESUMO

Extreme temperature and pressure conditions on the surface of Venus present formidable technological challenges against performing ground-based seismology. Efficient coupling between the Venusian atmosphere and the solid planet theoretically allows the study of seismically generated acoustic waves using balloons in the upper atmosphere, where conditions are far more clement. However, earthquake detection from a balloon has never been demonstrated. We present the first detection of an earthquake from a balloon-borne microbarometer near Ridgecrest, CA in July 2019 and include a detailed analysis of the dependence of seismic infrasound, as measured from a balloon on earthquake source parameters, topography, and crustal and atmospheric structure. Our comprehensive analysis of seismo-acoustic phenomenology demonstrates that seismic activity is detectable from a high-altitude platform on Earth, and that Rayleigh wave-induced infrasound can be used to constrain subsurface velocities, paving the way for the detection and characterization of such signals on Venus.

3.
J Acoust Soc Am ; 149(3): 1796, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765803

RESUMO

While studies of urban acoustics are typically restricted to the audio range, anthropogenic activity also generates infrasound (<20 Hz, roughly at the lower end of the range of human hearing). Shutdowns related to the COVID-19 pandemic unintentionally created ideal conditions for the study of urban infrasound and low frequency audio (20-500 Hz), as closures reduced human-generated ambient noise, while natural signals remained relatively unaffected. An array of infrasound sensors deployed in Las Vegas, NV, provides data for a case study in monitoring human activity during the pandemic through urban acoustics. The array records a sharp decline in acoustic power following the temporary shutdown of businesses deemed nonessential by the state of Nevada. This decline varies spatially across the array, with stations close to McCarran International Airport generally recording the greatest declines in acoustic power. Further, declines in acoustic power fluctuate with the time of day. As only signals associated with anthropogenic activity are expected to decline, this gives a rough indication of periodicities in urban acoustics throughout Las Vegas. The results of this study reflect the city's response to the pandemic and suggest spatiotemporal trends in acoustics outside of shutdowns.


Assuntos
Acústica/instrumentação , COVID-19/prevenção & controle , Monitoramento Ambiental , Atividades Humanas , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Humanos , Nevada , Ruído , Pandemias , SARS-CoV-2
4.
J Acoust Soc Am ; 148(4): 2361, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33138515

RESUMO

High-altitude monitoring of low-frequency acoustic waves (infrasound) on Earth has regained prominence in recent years, primarily driven by improvements in light-weight sensor technology and advances in scientific ballooning techniques. Balloon-borne infrasound monitoring is also being proposed as a remote sensing technique for planetary exploration. Contrary to ground-based infrasound monitoring, the infrasound noise background in the stratosphere as measured by a balloon remains uncharacterized and the efficacy of wind noise mitigation filters has not been investigated. In this study, an analysis of pressure data collected using infrasound microbarometers during the flight of a long-duration zero pressure balloon is presented. A dramatic reduction of background noise in the stratosphere is demonstrated and it is shown that wind noise mitigation filters are not effective at reducing wind noise under these conditions. Results from this study demonstrate stratospheric balloons as a low-noise platform for infrasound monitoring and motivate the development of improved noise mitigation tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...